SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978). A34, 143-157.

Acta Cryst. (1979). B35, 1425–1427

The Structures of Thallium Cadmium Triiodide and Dirubidium Iron Tetraiodide

By H. W. ZANDBERGEN, G. C. VERSCHOOR AND D. J. W. IJDO

Gorlaeus Laboratoria, PO Box 9502, Leiden, The Netherlands

(Received 19 June 1978; accepted 22 February 1979)

Abstract. TICdI₃, orthorhombic, *Pnma*, a = 10.080 (2), b = 4.412 (1), c = 16.289 (3) Å, Z = 4, V = 724.4 (2) Å³, $D_c = 6.39$ Mg m⁻³. The NH₄CdCl₃-type structure is adopted. Rb₂FeI₄, monoclinic, *P*2₁, a = 7.705 (2), b = 8.182 (2), c = 10.341 (2) Å, $\beta = 109.87$ (2)°, Z = 2, V = 613.1 (2) Å³, $D_c = 3.98$ Mg m⁻³. The Sr₂GeS₄-type structure is adopted.

Introduction. The investigations of the title compounds form part of the studies of compounds in the system $AI-BI_2$, A representing an alkali metal, In or Tl and B a first-row transition metal, Zn, Cd, Hg or Pb.

The phase diagram of the system $TII-CdI_2$ was constructed by II-yasov & Bergman (1959) and IIyasov, Dionisev & Bergman (1962). Recently the structure of Rb_2CoI_4 (Seifert & Stäudel, 1977), which is isostructural with Rb_2FeI_4 , was reported. Also Cs_2HgI_4 (Pakhomov & Fedorov, 1973) is isostructural with Rb_2FeI_4 {[101] in the reported Cs_2HgI_4 structure is the same as [001] in Rb_2FeI_4 }.

Single crystals were grown using the Bridgman method. The crystals of TlCdI₃ have one preferred growing direction, parallel to the *b* axis, giving needle-shaped crystals. With Rb₂FeI₄ no preferred growing direction was noticed. Crystal symmetry and approximate cell parameters of both compounds were determined from zero- and upper-level Weissenberg photographs. The systematic absences (0k0 with k = 2n + 1 for Rb₂FeI₄ and 0kl with k + l = 2n + 1 and hk0 with k = 2n + 1 for TlCdI₃) suggest the space groups *Pnma* or *Pn*₂, *a* for TlCdI₃ and *P*₂ or *P*₂/*m* for Rb₂FeI₄.

A crystal of TlCdI₃ of dimensions 0.02-0.03 mm was mounted along [010] and a crystal of Rb₂FeI₄ of dimensions 0.15-0.20 mm along [011] on an Enraf– Nonius three-circle diffractometer. Graphite-monochromatized Mo K α radiation ($\lambda = 0.71069$ Å; $\mu =$ 18.8 mm⁻¹ for Rb₂FeI₄ and 37.8 mm⁻¹ for TlCdI₃) was used for the data collection. The ω -scan technique was employed with θ ranges of 4-25° for Rb₂FeI₄, and 325° for TlCdI₃, and a scan width of $(1.9 + \tan \theta)^\circ$ for both compounds. 2145 (Rb_2FeI_4) and 2129 (TlCdI₃) reflexions were measured. Of the independent reflexions, 1195 and 583 were significant (358 and 117 insignificant) for Rb₂FeI₄ and TlCdI₃ respectively. A correction for absorption was made with a program developed by de Graaff (1973). After correction for Lorentz and polarization effects, the intensities were reduced to F_{o} values and symmetry-related reflexions were averaged. All crystallographic calculations were carried out on the Leiden University IBM 370/158 computer using a set of computer programs written or modified by Rutten-Keulemans & de Graaff (private communication). Scattering factors taken from Cromer & Waber (1968) were used with corrections for the real and imaginary part of the anomalous dispersion. The function minimized during the least-squares refinement was $w_F (F_o - F_c)^2$, using the weighting scheme $w_F =$ $1/\sigma_F^2$

The refinement was started with the positions of NH_4CdCl_3 (Brasseur & Pauling, 1938) as a model. Full-matrix refinement in *Pnma* of positional parameters and anisotropic thermal parameters for all ions led to convergence at $R_F = (F_o - F_c)/F_o = 4.74$ and $R_{wF} = [w_F(F_o - F_c)^2/w_F F_o^2]^{1/2} = 4.44$. Extinction correction resulted in $R_F = 3.65$ and $R_{wF} = 3.53$.

Starting with the positions found for *Pnma* fullmatrix refinement of positional parameters and anisotropic thermal parameters for all ions (with extinction correction) in space group $Pn2_1a$ led to convergence at $R_F = 3.41$ and $R_{wF} = 3.24$. The differences between the x and z parameters of both refinements are less than the standard deviations. The y parameters of both refinements are given in Table 1 together with the x and z parameters resulting from the refinement in *Pnma.**

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34273 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

^{© 1979} International Union of Crystallography

Although the lowering of the symmetry is significant according to the R_F ratio test we believe the space group to be Pnma. The reasons for believing this are: (1) the U_{22} parameters in the refinement in *Pnma* give no reason to expect a deviation in the [010] direction, (2) the shifts of the ions in the refinement in $Pn2_1a$ are random and (3) the largest deviation in the [001] direction is only 0.03 Å.

Measurements with second-harmonic generation (Kurtz & Perry, 1968), to establish whether or not the compound is centrosymmetric, did not yield a reliable result. There were a considerable number of spurious signals making it very difficult to determine whether or not a second harmonic signal is present. The interatomic bond distances and angles are listed in Tables 2 and 3.

Table 1. Positional parameters of the refinement in space group Pnma and the y parameter of the refinement in $Pn2_1a$ for TlCdI₃

	x	У	Z	$y(Pn2_1a)$
TI	0.43617 (10)	0.25	-0.17606 (6)	0.25
Cd	0.16776 (15)	0.25	0.05634 (9)	0.2435 (12)
I(1)	0.16350 (12)	0.25	0.48989 (8)	0.2508 (12)
I(2)	0.29119 (11)	0.25	0-21392 (7)	0.2481 (14)
I(3)	0.02409 (12)	0.25	<i>−</i> 0·10698 (7)	0.2453 (10)

Table 2. Interatomic distances (Å) for TlCdI,

TI - I(1)	3.800 (2)	I(1) - I(1)	4.415(1)
TI - I(1)	3.631 (2) ×2	I(1) - I(1)	3.980 (3)
Tl-I(2)	3·578 (2) ×2	I(1) - I(2)	4.288 (3)
TI-I(2)	3.651 (2) ×2	I(1)–I(3)	4.103 (3)
Tl-I(3)	3.642 (2)	I(1)–I(3)	4.156 (3)
Tl-I(3)	4.302 (2)	I(2)—I(2)	4.415 (1)
Cd-I(1)	2·989 (2) ×2	I(2) - I(3)	4.243 (3)
Cd-l(2)	2.851 (3)	I(2)–I(3)	4.104 (2)
Cd-I(3)	3.028 (2)	I(3)–I(3)	4.415 (1)
Cd-I(3)	3.048 (2) ×2	I(3)–I(3)	4.153 (3)

Table 3. Bond angles (°) and their estimated standard deviations for TlCdI₃

I(1) - TI - I(1)	64.73 (3)	I(2) - Tl - I(3)	69-27 (3)
I(1) - TI - I(2)	71.00(3)	I(2) - TI - I(3)	74.40 (3)
I(1) - TI - I(2)	140.33 (2)	I(2) - Tl - I(3)	61.48 (3)
I(1) - TI - I(3)	111.93 (3)	I(2) - Tl - I(3)	71.14 (3)
I(1) - TI - I(3)	128.84 (4)	I(3) - Tl - I(3)	119-24 (3)
I(1)-TI-I(1)	88.02 (2)	I(1)-Cd-I(1)	95-21 (5)
I(2) - TI - I(2)	135-71 (4)	I(1)-Cd-I(2)	94.45 (5)
I(1) - TI - I(2)	79.86 (3)	I(1)-Cd-I(3)	87.37 (4)
I(1) - TI - I(2)	124.00 (4)	I(1)-Cd-I(3)	85.63 (2)
I(1) - TI - I(2)	62.51 (3)	I(1)-Cd-I(3)	173.50 (6)
I(1)-TI-I(3)	142.10 (2)	I(2)-Cd-I(3)	177.30 (7)
I(2) - TI - I(2)	76.20 (3)	I(2) - Cd - I(3)	91.91 (4)
I(2) - TI - I(2)	91.39 (1)	I(3) - Cd - I(3)	86.23 (4)
I(2)-Tl-I(2)	140.39 (3)	I(3)-Cd-I(3)	92.81 (5)
I(2) - Tl - I(3)	141.83 (2)		

For the refinement of Rb₂FeI₄ we took the positions of Sr₂GeS₄ as starting parameters because the axis ratio and the systematically absent reflexions are the same for both compounds (Philippot, Ribes & Maurin, 1971) and because the distances calculated from a three-dimensional Patterson map agree with this structure. Fullmatrix refinement of positional and isotropic thermal parameters in space group $P2_1/m$ led to convergence at $R_F = \sum (|F_o| - |F_c|)/\sum |F_o| = 4.81$ and $R_{wF} = \sum w_F (|F_o| - |F_c|)^2 \sum w_F F_o^2 |^{1/2} = 5.52$, w_F being $1/\sigma_F^2$. The refinement in $P2_1$ converges at $R_F = 4.39$ and $R_{wF} = 5.03$. Because of the ratio of the R values of the refinements in $P2_1/m$ and $P2_1$ and the significance of the shifts of the ions in $P2_1$ with respect to $P2_1/m$ we have concluded that the space group must be $P2_1$. Measurements with second-harmonic generation did not yield a reliable result as the sample was sensitive to the laser beam. It was therefore not possible to determine whether the measured signal was a second harmonic or a spurious signal. Extinction correction led to $R_F = 4.07$ and $R_{wF} = 4.45$. We could not decide between the above structure and the inverted one as both give the same R values. The results of the refinement are given in Table 4. In Table 5 some distances and bond angles are given.

Table 4. Positional parameters for Rb₂FeI₄

	x	У	Z
Rb(1)	0.1971 (2)	0.7408 (7)	0.0383 (1)
Rb(2)	0.2917 (2)	0.7391 (6)	0.5825 (1)
Fe	0.2057(2)	0.2444 (7)	0.7878 (2)
I(1)	0.4208(1)	0.2485 (7)	0.6390(1)
I(2)	0.3741(2)	0.2500	0.0569 (1)
I(3)	-0.0167 (5)	0.0107 (4)	0.7342 (3)
I(4)	0.0199 (5)	0.0034 (4)	-0.7252 (3)

Table 5. Distances (Å) and some bond angles (°) for Rb₂Fel₄

Rb(1) - I(1)	3.644 (1)	Rb(2) - I(1)	3.689 (2)
Rb(1) - 1(2)	3.795 (2)	Rb(2)-I(2)	3.744 (2)
Rb(1) - I(3)	3.675 (5)	Rb(2) - I(3)	3.788 (5)
Rb(1) - I(3)	3.809 (5)	Rb(2) - I(3)	3.763 (4)
Rb(1)-I(4)	3.760 (5)	Rb(2) - I(4)	3.797 (4)
Rb(1)-I(4)	3.710 (4)	Rb(2) - I(4)	3.779 (5)
Rb(1) - I(2)	4.280 (6)	Rb(2) - I(1)	4.129 (7)
Rb(1)-l(2)	4.337 (6)	Rb(2)-I(1)	4.279 (7)
Fe-I(1)	2.618 (2)		
Fe-I(2)	2.640 (2)	I—I	4.03–4.84
Fe-I(3)	2.638 (6)		
Fe I(4)	2.634 (6)		
I(1)—Fe— $I(2)$	115.9(1)	I(2) - Fe - I(3)	108.7 (2)
I(1) - Fe - I(3)	110.6 (2)	I(2)-Fe-I(4)	107.1 (2)
I(1) - Fe - I(4)	110.0 (2)	I(3)-Fe- $I(4)$	103.9 (1)

Discussion. TlCdI₃ consists of double chains of edgesharing CdI₆ octahedra with Tl⁺ ions between the double chains in nine coordination. Haupt, Huber & Preut (1974) have given a more detailed description of RbPbI₃, which is isostructural with TlCdI₃. The ABI_3 compounds with the NH₄CdCi₃-type structure are listed in Table 6. Although Rb⁺ has almost the same

Table 6. Cell parameters of several ABI, compounds

ND = neutron diffraction; XD = X-ray diffraction.

	Type of			
Compound	diffraction	a (Å)	b (Å)	c (Å)
TlMnI,	ND	10.070 (1)	4.2963 (4)	16.171 (2)
TlFeI,	ND	9.967(1)	4.2407 (3)	15.981 (1)
TlCdI,	XD	10.080 (2)	4.412(1)	16.289 (3)
KPbI	XD	10.169 (2)	4.716(1)	17.359 (4)
RbPbľ, ^b	XD	10.274 (1)	4.773 (1)	17.381 (2)
CsPbI ₃ ^a	XD	10.46	4.797	17.78

References: (a) Moller (1959); (b) Haupt, Huber & Preut (1974).

Table 7. Cell parameters of ternary iodides with the Sr_2GeS_4 structure

	a (Å)	b (Å)	c (Å)	β(°)
K,MnI₄	7.943 (4)	8.197 (3)	9.525 (2)	108.36 (5)
$K_{2}MnI_{4}^{a}$	7.922	8.229	9.719	108.3
Rb ₂ Mnl₄	7.844 (2)	8.253 (2)	10.281 (1)	109.45 (1)
Rb ₂ Mnl ₄ ^a	7.854	8.264	10.304	109.4
K ₂ Fel ₄	7.832 (3)	8.161 (3)	9.663 (2)	108.42 (4)
Rb,Fel₄	7.705 (2)	8.182 (2)	10.341 (2)	109.87 (2)
K,Čol₄	7.723 (5)	8.087 (4)	9.688 (2)	108.56 (6)
K ₂ Col₄ ^b	7.702	8.090	9.677	108.4
Rb,Col	7.630 (3)	8.143 (3)	10.382 (2)	109.56 (6)
Rb ₂ Col ₄ ^b	7.657	8.144	10.384	109.8
Ti,Col₄	7.521 (3)	7.972 (3)	9.755 (2)	109.28 (6)
Tl,Col,b	7.519	7.972	9.762	108.9
K ₂ ZnI₄	7.745 (3)	8.121 (2)	9.665 (1)	108.28 (6)
Rb ₂ ZnI₄	7.642 (2)	8.176 (2)	10.371 (3)	109.84 (2)
In ₂ ZnI ₄	7.471 (3)	7.967 (3)	9.827 (2)	109.57 (4)
Tl,ZnI	7.548 (2)	7.997 (2)	9.730(1)	109.00 (5)
Rb,CdI₄	8.004 (7)	8.323 (3)	10.164 (8)	108.96 (7)
Cs ₂ CdI₄	7.799 (4)	8.381 (2)	11.019 (3)	110.77 (3)
Cs ₂ HgI ₄	7.722 (3)	8.376 (3)	11.040 (5)	110.47 (5)
Cs,HgI	7.94	8.46	11.32	110.66

References: (a) Seifert & Kischka (1978); (b) Seifert & Stäudel (1977); (c) Pakhomov & Federov (1973), transformed.

radius as Tl⁺ compounds Rb BI_3 do not have the NH₄CdCl₃ structure, except for RbPbI₃. Perhaps the occurrence of compounds having the NH₄CdCl₃ structure is favoured by the lone pair of Tl⁺ which fits into the structure rather well because one of the Tl⁺-I⁻ distances is considerably larger than the rest (see Table 2).

 Rb_2FeI_4 consists of isolated FeI_4^{2-} tetrahedra with the Rb^+ ion in 6 + 2 coordination. It has rows of I(3) and I(4) ions along the *b* axis determining the length of the *b* axis. One would expect therefore that the Rb, I(1) and I(2) ions have too much space in the [010] direction. That this is actually the case can be seen from the anisotropic parameters. If one were to rotate the tetrahedra in order to reduce the space for Rb, I(1) and I(2), the coordination of the Rb ions would be lowered. Probably because of this change in coordination, Rb_2FeI_4 has a non-modified Sr_2GeS_4 -type structure. Some compounds isostructural with Rb_2FeI_4 are listed in Table 7.

References

- BRASSEUR, H. & PAULING, L. (1938). J. Am. Chem. Soc. 60, 2886–2890.
- CROMER, D. T. & WABER, J. T. (1968). Acta Cryst. 18, 104-109.
- GRAAFF, R. A. G. DE (1973). Acta Cryst. A 29. 298-301.
- HAUPT, H. J., HUBER, F. & PREUT, H. (1974). Z. Anorg. Allg. Chem. 408, 209-213.
- IL-YASOV, I. & BERGMAN, A. G. (1959). Russ. J. Inorg. Chem. 4, 414-416.
- IL-YASOV, I., DIONISEV, S. D. & BERGMAN, A. G. (1962). Russ. J. Inorg. Chem. 7, 318-319.
- KURTZ, S. K. & PERRY, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
- Moller, C. K. (1959). Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 32, 1–18.
- Ракномоч, V. I. & Fedorov, P. M. (1973). Sov. Phys. Crystallogr. 17, 833-836.
- PHILIPPOT, E., RIBES, M. & MAURIN, M. (1971). Rev. Chim. Minéral. 8, 99–109.
- SEIFERT, H. J. & KISCHKA, K. H. (1978). Thermochim. Acta, 27, 85–93.
- SEIFERT, H. J. & STÄUDEL, L. (1977). Z. Anorg. Allg. Chem. 429, 105–117.